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Abstract: Saponins are specific metabolites abundantly present in plants and several marine animals.
Their high cytotoxicity is associated with their membranolytic properties, i.e., their propensity to
disrupt cell membranes upon incorporation. As such, saponins are highly attractive for numerous
applications, provided the relation between their molecular structures and their biological activities
is understood at the molecular level. In the present investigation, we focused on the bidesmosidic
saponins extracted from the quinoa husk, whose saccharidic chains are appended on the aglycone
via two different linkages, a glycosidic bond, and an ester function. The later position is sensitive
to chemical modifications, such as hydrolysis and methanolysis. We prepared and characterized
three sets of saponins using mass spectrometry: (i) bidesmosidic saponins directly extracted from the
ground husk, (ii) monodesmosidic saponins with a carboxylic acid group, and (iii) monodesmosidic
saponins with a methyl ester function. The impact of the structural modifications on the membra-
nolytic activity of the saponins was assayed based on the determination of their hemolytic activity.
The natural bidesmosidic saponins do not present any hemolytic activity even at the highest tested
concentration (500 µg·mL−1). Hydrolyzed saponins already degrade erythrocytes at 20 µg·mL−1,
whereas 100 µg·mL−1 of transesterified saponins is needed to induce detectable activity. The obser-
vation that monodesmosidic saponins, hydrolyzed or transesterified, are much more active against
erythrocytes than the bidesmosidic ones confirms that bidesmosidic saponins are likely to be the
dormant form of saponins in plants. Additionally, the observation that negatively charged saponins,
i.e., the hydrolyzed ones, are more hemolytic than the neutral ones could be related to the red blood
cell membrane structure.

Keywords: saponins; mass spectrometry; structure-activity relationship; chemical modification;
hemolytic activity

1. Introduction

For many years, molecules of natural origin have been a research topic of interest, due to
their structural diversity and complexity, but also for their biological properties, which can
be of major industrial interest if correctly understood and mastered. Within these numerous
classes of biomolecules, specific metabolites, such as alkaloids, flavonoids, and saponins, are a
hot research topic due to their specific interactions with living organisms [1–3]. Among these
specific metabolites, saponins have been demonstrated to fulfill defensive roles, intervene in
inter- and intra-species communications, or even play a role in reproduction processes [4–10].
These molecules are abundantly present in plants [11], and are also present in a diversity of
marine animals, like sponges and echinoderms [12,13]. Saponins present a specific structural
identity consisting of the association between an apolar aglycone and one or more (linear
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or branched) glycans. Monodesmosidic and bidesmosidic saponins are respectively con-
stituted by a single or two saccharidic chains anchored on a single aglycone [14]. Diverse
specific chemical functions, such as sulfate groups [15], free carboxylic acid (−COOH) [16],
esterified acetic, tiglic or angelic acids [17,18], and many others [19,20], are also often present
on saponins and modulate the saponin biological activities [21–25]. The membranolytic
activity of saponins, i.e., their propensity to disrupt the cell membrane upon interaction
with membrane sterols, represents one of the most interesting properties for pharmaceutical
applications [26–30]. Computational chemistry studies have recently made it possible to
visualize the saponin/membrane interaction at the molecular level and represent a promising
tool for identifying structural moieties responsible for the activity [31–34] on the way to the
establishment of the Structure–Activity Relationship (SAR) [26]. From an experimental point
of view, selective and specific modification of chemical functions using organic chemistry
methods represents an elegant method for evaluating their contribution to membranolytic
activity [35,36]. As a typical example, there is a general agreement that bidesmosidic saponins
are less cytotoxic than monodesmosidic ones [28]. In this context, we recently successfully
converted the bidesmosidic saponins extracted from the husk of the Chilean Chenopodium
quinoa Willd. (1798) into their monodesmosidic ones [37–39] upon specific microwave-assisted
hydrolysis of the ester bond at C28 (see Figure 1). The cytotoxicity of the hydrolyzed saponins
was shown to be significantly enhanced with regards to the natural bidesmosidic saponins [40].
More recently, we investigated the importance of the sulfate function as a cytotoxicity vector
for saponins contained in the viscera of the Malagasy sea cucumber Holothuria scabra [41].
Under microwave activation, the sulfated saponins were quantitatively converted into their
desulfated counterparts, and the comparison of the hemolytic activities (HA) of both sets
of saponins revealed that the sulfate group was mandatory for the membranolytic activ-
ity [41]. Several similar studies have been reported in the literature, i.e., esterification of tea
saponins [42], amide group derivatization of β-hederin [43], and selective modification of
the glycan or the aglycone of chlorogenin-type saponins [44]. We strongly believe that these
combined efforts will contribute to the understanding of the cytotoxicity of saponins at the
molecular level.
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dant compounds) [45] and their ease of plant cultivation in almost any conditions [37,38], 
the husk, which represents approximatively 10% of the weight of the seed, is currently 
discarded due to the large concentration of saponins. Then, it can be used as a source of 
value-added products with applications in pharmacy, agriculture, and foods, which is in 
line with the Circular Economy policies promoted by the EU, provided the biological 

Figure 1. Specific chemical modifications of the bidesmosidic saponins extracted from Chenopodium
quinoa husk: (i) hydrolysis of Saponin O to Saponin Ohydro, and (ii) transesterification of Saponin O
to Saponin Oalkyl.

In the present study, we re-examined the cytotoxicity of the saponins found in the husk
of the quinoa seeds [45]. Our motivation comes from the fact that, even if quinoa seeds are
known for their very high nutritional value (rich in protein (~20%) and antioxidant com-
pounds) [45] and their ease of plant cultivation in almost any conditions [37,38], the husk,
which represents approximatively 10% of the weight of the seed, is currently discarded
due to the large concentration of saponins. Then, it can be used as a source of value-added
products with applications in pharmacy, agriculture, and foods, which is in line with the
Circular Economy policies promoted by the EU, provided the biological properties of the
natural molecules and their easily accessible derivatives can be fully identified.

In our previous study [40], we demonstrated that monodesmosidic saponins, such
as Saponin Ohydro produced from Saponin O, shown in Figure 1, are more cytotoxic than
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the natural bidesmosidic saponins. The cytotoxicity of saponins is often associated with
their amphiphilic nature making their association with cell membrane favorable [28]. We
thus suspected that the neutralization of the carboxylate group present at C28 on the
hydrolyzed saponins should enhance their cytotoxicity. Here, we report on the impact
of the transesterification, using potassium methanolate in methanol, of the bidesmosidic
saponins extracted from quinoa husk on their cytotoxicity. To achieve this objective, we
compare the hemolytic activities of three different fully characterized samples: (i) natural
saponins extracted from the quinoa husk, (ii) C-28 hydrolyzed saponins, and (iii) C-28
transesterified saponins. All the samples are qualitatively and quantitatively characterized
using mass spectrometry methods, in light of the support of literature data [37,39,40].

2. Results and Discussion
2.1. Saponin Identification and Quantification in the Natural Extract (NE)

The characterization of the saponins contained in the NE is achieved using the mass
spectrometry (MS) protocol developed in our laboratory [46], combining MALDI-MS,
accurate mass measurements (HRMS) and LC-MS (MS) experiments. The saponin iden-
tification is based on reference studies by Madl et al. [37], Kuljanabhagavad et al. [39]
and Colson et al. [40]. The quinoa saponins are bidesmosidic (C3 and C28) triterpenoidic
saponins and have the particularity to possess a single glucose residue on C28 [37,39], see
Figure 2. Their structure differences arise from (i) the number and the nature (glucose—Glu,
galactose—Gal, arabinose—Ara, xylose—Xyl, glucuronic acid—GlcA) of the saccharide
units composing the C3-attached glycan, and from (ii) the structure of the triterpene
aglycone (oleanic acid—OA, hederagenin—Hed, AG489, AG 487, serjanic acid—SA, phyto-
laccagenic acid—PA, sapogenin I—SGI, sapogenin II—SGII) [37,39], see also Figure 2.
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Figure 2. General structure of the bidesmosidic saponins extracted from the quinoa husk. R1

corresponds to the C3-attached glycan as detailed in Table 1. R2 and R3 functions are specific to the
aglycone moiety as shown in the presented aglycones. The C28-glucose is highlighted in red since
this residue will be involved in the chemical modifications targeted, i.e., hydrolysis and methanolysis.
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Table 1. Chenopodium quinoa husk extract: data collected by MS-based experiments. The compositions and mass error measurements (∆) were determined by
MALDI-HRMS. a The saponins were identified based on liquid chromatography (LC-MS) and collision-induced dissociation experiments (LC-MSMS). b The saponin
ions detected between m/z 789 and 863 are [2 + 0] fragment ions generated during the MALDI ionization from the [2 + 1] saponins. The %-weights in extracts and
the mass fractions (mg·g−1 of Chenopodium quinoa husk powder) were determined based on the LC ion signal intensity ratios, with Hederacoside C as an internal
standard, and using the gravimetric extraction yield (15.5 mg·g−1). The molar proportions (%) were determined based on LC ion signal relative integration. See the
“Materials and Methods” section for the details of all the quantitative analysis.

Saponins Elemental
Compositions (M)

m/z (∆ ppm)
[M + Na]+ Aglycone 3-O Glycan

(R1)

%-Weights
in Extract

(%)

Mass Fractions in
Husk

(mg·g−1)

Retention
Times (min)

Molar
Proportions (%)

O a C54H86O25 1157.5356 (1.6) PA Glu-Glu-Ara- 20.01 ± 0.11 3.101 5.34 20.11 ± 0.13

G a C54H86O24 1141.5407 (0.6) SA Glu-Glu-Ara- 0.29 ± 0.03 0.045 6.31 0.34 ± 0.05

32 a C53H84O24 1127.5250 (3.2) PA Glu-Ara-Ara- 3.46 ± 0.02 0.536 4.89 3.62 ± 0.03

61 a C53H86O23 1113.5458 (1.2) Hed Glu-Glu-Ara- 1.98 ± 0.06 0.307 6.51 2.03 ± 0.07

N a C49H78O21 1025.4933 (3.2) PA Glu-Gal- 3.89 ± 0.10 0.603 4.77 4.00 ± 0.13

4 a C48H76O21 1011.4777 (1.1) AG533 Glu-Ara- 0.07 ± 0.03 0.011 5.43 0.09 ± 0.03

B a C48H76O20 995.4828 (0.1) PA Glu-Ara- 29.50 ± 0.09 4.572 5.39 30.16 ± 0.09

Q a C48H78O19 981.5035 (3.3) Hed Glu-Gal- 1.87 ± 0.10 0.290 5.92 1.97 ± 0.11

H a C48H76O19 979.4878 (4.1) SA Glu-Ara- 0.29 ± 0.09 0.045 6.31 0.33 ± 0.12

19 a C47H76O19 967.4878 (1.6) AG489 Glu-Ara- 5.11 ± 0.07 0.792 3.72 5.83 ± 0.10

F a C47H74O19 965.4722 (1.4) Hed Xyl-GlcA- 7.01 ± 0.10 1.086 4.92 7.69 ± 0.05

I a C47H76O18 951.4929 (2.0) Hed Glu-Ara- 22.43 ± 0.11 3.476 6.58 23.83 ± 0.14

/ b C43H68O16 863.4405 (0.6) / / / / / /

/ b C42H66O16 849.4249 (1.9) / / / / / /

/ b C42H66O15 833.4299 (0.1) / / / / / /

/ b C42H68O14 819.4507 (2.1) / / / / / /

/ b C42H66O14 817.4350 (0.5) / / / / / /

/ b C41H66O14 805.4350 (5.0) / / / / / /

/ b C41H64O14 803.4194 (0.7) / / / / / /

/ b C41H66O13 789.4401 (0.1) / / / / / /
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The saponin NE is obtained by methanol extraction of the ground husks, followed
by successive liquid/liquid extractions, as described in the “Materials and Methods” sec-
tion [47]. The yield of extraction is 310.06 mg per 20 g of ground husk, i.e., 15.5 mg·g−1.

Keeping in mind the literature data [37,39,40] revealing that quinoa husk saponins are
bidesmosidic three- and four-sugar saponins, the NE is first qualitatively and quantitatively
analyzed by mass spectrometry and all the data are presented in Table 1. The MALDI-
MS(+) mass spectrum presents three groups of m/z signals, see Figure 3a. These signals
are ascribed to sodium-cationization saponins, [M + Na]+ [37,39,40]. The presence of mon-
odesmosidic and bidesmosidic saponins must be considered a priori, and these saponins
will be identified as [x + y], where x and y stand for the number of monosaccharide residues
at C3 and C28, respectively. Please note that monodesmosidic saponins are not expected in
the NE based on literature data [37,39,40], but we previously showed that monodesmosidic
saponin ions may be generated during the MALDI-MS analysis [40]. The first group of
saponin ions (m/z 1113–1157) corresponds to four-saccharide saponin ions, the second
group (m/z 951–1025) corresponds to three-saccharide saponin ions, and the third group
(m/z 789–863) corresponds to unexpected two-saccharide saponin ions. In the MALDI-MS
spectrum presented in Figure 3a, we therefore assign to the m/z 951–1025 saponin ions
the [2 + 1] and [3 + 0] topologies, whereas the m/z 1113–1157 ions are purely [3 + 1] ions
and the m/z 789–863 ions are [2 + 0] fragment ions, as shown in the literature [40] and
confirmed below using LC-MS analysis. Let us again emphasize that, when a saponin
extract is exposed to mass spectrometry analysis, depending on the selected ionization
method, either Electrospray or MALDI, fragment ions may be generated. This is the case
here, as demonstrated in [40], for the bidesmosidic saponins extracted from the quinoa
husk that suffer an ester bond dissociation under MALDI conditions [40].
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Figure 3. MALDI mass spectrometry analysis of three different saponin extracts: (a) the natural extract
(NE); (b) the microwave-assisted alkaline hydrolysis (pH 10—150 ◦C—5 min) reaction products;
and (c) the transesterification using MeOK (MeOHanh—N2—60 ◦C—60 min) reaction products. The
saponin ion assignment was performed using the [x + y] symbolism, where x and y stand for the
number of monosaccharide residues at C3 and C28, respectively. [x + Me] indicates that the C-28
glucose residue has been substituted by a methoxy group. Please note that the monodesmosidic
[2 + 0] and [3 + 0] saponin ions detected in the NE (a) are produced during the MALDI processes
from the corresponding bidesmosidic saponins (see text).

Table 1 presents the elemental compositions of all the MALDI-observed [M + Na]+ ions
determined based on HRMS measurements. Twenty different elemental compositions were
detected, and are all gathered in Table 1. Please note that, in Figure 3a, only the most intense sig-
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nals are assigned for readability reasons. LC-MS and LC-MSMS analyses are further mandatory
to (i) confirm that the detected ions are saponin ions, (ii) discriminate between monodesmosidic
and bidesmosidic saponin ions, (iii) identify potential isomers, and (iv) determine the glycan
sequence and the aglycone nature using collision-induced dissociation (CID) experiments. Our
LC analysis confirmed that the NE exclusively contains bidesmosidic saponins with 12 different
elemental compositions and no isomers (see Figures S1 and S2) and that the two-sugar saponin
ions detected between m/z 789 and 863 in the MALDI spectrum in Figure 3a are [2 + 0] fragment
ions produced from the [2 + 1] saponins during the MALDI ionization. Additionally, some of
the three-sugar saponin ions (m/z 951–1025) detected in Figure 3a are [3 + 0] fragment ions
from the [3 + 1] bidesmosidic saponins. This also confirms that saponin quantification using
MALDI is not relevant. The LC-MSMS spectra of the most abundant saponins ions, allowing the
determination of the aglycone and saccharide sequence, are shown in Figures S3–S5. Please note
that, upon LC-MS (MS), the saponins are mainly detected as [M + H]+ ions and that the CID
spectra of all the quinoa saponin [M + H]+ ions have already been presented in our previous
study [40].

Extracted Ion Current (EIC) chromatograms (see Figures S1 and S2) are used for the
determination of the molar proportions of all the different bidesmosidic saponins detected
in the NE by integrating the corresponding ion signals. Among the 12 saponin ions
detected by LC-MS, m/z 1135 (Saponin O), m/z 973 (Saponin B), and m/z 929 (Saponin I)
are the most abundant saponins in the NE, with molar proportions around 20, 30 and 24%,
respectively, see Table 1. We will pool all the other minor saponins (26% molar proportion)
together according to their compositions, e.g., 3-sugar vs. 4-sugar saponins. Saponins G,
32 and 61 will accordingly be gathered as saponins X (~6% molar ratio) and saponins N,
4, Q, H, 19 and F as saponins Y (~20%). These data are presented as a sector diagram in
Figure 4a for further comparison. Using Hederacoside C, a commercially available saponin
extracted from Hedera helix, as an internal standard, the saponin %-weights in the NE were
determined for the 12 elemental compositions in Table 1. The three major saponins, namely
Saponin O, Saponin B and Saponin I, represent respectively ~20%, ~30% and ~22% in
weight of the dried extract, while the pooled saponins X and saponins Y, represent ~6%
and ~18%, leading to a saponin weight percentage of 95.91% in the extract, i.e., 95.91 mg
of saponins per 100 mg of dry extract. The saponin %-weight in the extract was further
converted in the saponin mass fraction (mg·g−1) in the ground husk, using the extraction
gravimetric yield previously determined at 15.5 mg of extract per g of ground husk. The
three major saponins are present at ~3 (Saponin O), ~4.5 (Saponin B), and ~3.5 (Saponin I)
mg per g of husk powder, while the minor saponins were estimated to be present around
~0.9 (Saponins X), and ~2.8 (Saponins Y) mg·g−1 of husk powder, see Table 1.

2.2. Selective Hydrolysis and Transesterification of the Quinoa Husk Bidesmosidic Saponins at C28

The bidesmosidic saponins of the NE, see Figure 1, are first hydrolyzed under mi-
crowave activation to produce the monodesmosidic saponins bearing a carboxylate group
at C28, generating the so-called hydrolyzed extract (HE). This reaction was previously
developed in our laboratory [40], but, since we are conducting a comparative study, the
intrinsic variability of the saponin natural extract makes it necessary to qualitatively and
quantitatively characterize the hydrolysis products. Figure 3b presents the MALDI mass
spectrum recorded after microwave-assisted hydrolysis and immediately confirms the
success of the hydrolysis, since the bidesmosidic [3 + 1] saponin ions can no longer be
detected. Further, HRMS measurements and LC-MS and LC-MSMS experiments confirm
that the saponin ions detected in the m/z 951–995 mass range correspond to monodesmo-
sidic [3 + 0] saponins and that the m/z 789–963 ions are [2 + 0] saponins. The [3 + 1] and
[2 + 1] saponins can no longer be detected, testifying to the success of the hydrolysis. As a
typical example, we compare in Figure 5a,b the LC-MSMS mass spectra of the [M + H]+

ions from (a) Saponin B (m/z 973) and hydrolyzed Saponin B (m/z 811). Upon collisional
activation (see also Figure S4), the m/z 973 Saponin B ions first expel the C-28 glucose
residue to generate the fragment ions detected at m/z 811 that ultimately decompose to
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yield the aglycone ions detected at m/z 499. These m/z 811 ions also correspond, from
the hydrolyzed extract, to the [M + H]+ ions of the C-28 hydrolyzed Saponin B. The CID
spectrum of these m/z 811 ions is presented in Figure 5b, and a comparison of Figure 5a,b
unambiguously confirms that the hydrolysis reaction is specific at the C-28 position, since
all the detected fragment ions detected below m/z 811 are identical.
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Figure 5. LC-MSMS analysis of the (a) natural extract, (b) hydrolyzed extract, and (c) transesterified
extract. Collision-induced dissociation (CID) mass spectra of the (a) m/z 973, (b) m/z 811 and (c) m/z
825 precursor ions, respectively, corresponding to the [M + H]+ ions of (a) Saponin B, (b) hydrolyzed
Saponin B, and (c) transesterified Saponin B.

The data are presented in Table 2, as well as in Figure 4, for quantitative analysis.
The comparison of the sector diagrams built for the NE and the HE also confirms that the
hydrolysis reaction is specific to the C28 ester bond, since the relative proportions between
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the different saponins are conserved upon hydrolysis. In other words, saponins O (20.1%),
B (30.2%), I (23.8%), X (5.5%) and Y (19.9%) are quantitatively (~100% yield) converted into
saponins Oh (19.9%), Bh (31.1%), Ih (24.0%), Xh (5.6%), and Yh (19.4%), see Figure 4.

Table 2. Microwave-assisted alkaline hydrolysis (pH 10—150 ◦C—5 min) of Chenopodium quinoa husk
saponin extract: the elemental compositions of saponin ions are determined by MALDI-HRMS and the
molar proportions (%) of the saponin ion are estimated based on the LC-MS signal relative integration.

Saponins Elemental
Compositions (M)

m/z
[M + Na]+

Mass Errors
(∆ ppm)

Retention
Times (min)

Molar
Proportions (%)

Oh C48H76O20 995.4828 2.8 7.02 20.06 ± 0.08

Gh C48H76O19 979.4878 0.8 8.71 0.23 ± 0.01

32h C47H74O19 965.4746 2.3 6.51 3.35 ± 0.03

61h C47H76O18 951.4929 3.0 6.71 1.98 ± 0.03

Nh C43H68O16 863.4405 0.6 6.78 4.43 ± 0.04

4h C42H66O16 849.4249 1.9 7.42 0.05 ± 0.01

Bh C42H66O15 833.4299 0.1 7.23 30.31 ± 0.02

Qh C42H68O14 819.4507 2.1 8.76 1.95 ± 0.03

Hh C42H66O14 817.4350 0.5 8.81 0.35 ± 0.03

19h C41H66O14 805.4350 5.0 5.28 5.75 ± 0.04

Fh C41H64O14 803.4194 0.7 6.67 7.95 ± 0.03

Ih C41H66O13 789.4401 0.1 10.14 23.59 ± 0.10

As shown in Figure 1, the third set of saponins targeted for our comparative study
is constituted by C28-esterified saponins. Two strategies can be borrowed from organic
chemistry corresponding to the direct esterification of the hydrolyzed saponins and the
transesterification of the bidesmosidic saponins. All attempts, see Figure S6, to esterify the
hydrolyzed saponins at the C28 position failed, and the C28 carboxylic acid/carboxylate
moiety was systematically recovered after reaction [48,49]. We further tested several
protocols, see Figure S7, for the transesterification of the natural bidesmosidic saponins [50].
As shown in Figure 1, potassium methanolate (MeOK, 1 M), in anhydrous methanol
(MeOHanh) for 1 h at 60 ◦C, efficiently produces the C28-methylated saponins, yielding
so-called Transesterified Extract (TE). Indeed, as shown in Figure 3c, the signals attributed
to the bidesmosidic saponin ions can no longer be detected after MeOK treatment. The [M
+ Na]+ ions are now detected at 148 u (mass unit) lower than the bidesmosidic saponin ions.
This mass difference, confirmed upon HRMS measurements (see Table 3), corresponds to
the formal substitution of a glucose residue by a methoxy group. Globally, the MALDI
mass spectrum features two groups of ions that correspond to the [3 + Me] and [2 + Me]
saponins, respectively, in the m/z 965–1009 and m/z 803–877 mass ranges. LC-MS and
LC-MSMS analyses confirm that the transesterification of the bidesmosidic saponins is
quantitative and selective, since all the bidesmosidic saponins constituting the NE are now
detected as their C28-methylated counterparts in the TE. Again, as a typical example, the
LC-MSMS spectra of the [M + H]+ ions of Saponin B (m/z 973), hydrolyzed Saponin B (m/z
811), and transesterified Saponin B (m/z 825) are compared in Figure 5. It is significant to
observe that all the fragment ions from the [M + H]+ ions of transesterified Saponin B are
shifted to 14 u mass higher than the fragment ions from the [M + H]+ ions of hydrolyzed
Saponin B. This strongly supports our conclusion that the structural modification under
the MeOK treatment is specific to the C-28 ester function.
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Table 3. Transesterification (MeOK 1 M—MeOHanh—N2—60 ◦C—60 min) of Chenopodium quinoa
husk bidesmosidic saponins: the elemental compositions of saponin ions are determined by MALDI-
HRMS, and the molar proportions (%) of all the saponin ions are estimated based on the LC-MS
signal integration.

Saponin Elemental
Composition (M)

m/z
[M + Na]+

Mass Error
(∆ ppm)

Retention
Time (min)

Composition Molar
Proportion (%)

Otr C49H78O20 1009.4984 1.6 9.47 20.09 ± 0.06

Gtr C49H78O19 993.5035 3.5 11.45 0.21 ± 0.01

32tr C48H76O19 979.4878 0.2 8.74 3.34 ± 0.05

61tr C48H78O18 965.5086 1.5 11.81 1.91 ± 0.03

Ntr C44H70O16 877.4198 0.2 9.89 4.46 ± 0.11

4tr C43H68O16 863.4405 2.2 9.33 0.06 ± 0.01

Btr C43H68O15 847.4456 1.7 10.72 30.26 ± 0.11

Qtr C43H70O14 833.4663 3.1 7.00 1.88 ± 0.03

Htr C43H68O14 831.4507 1.7 7.86 0.32 ± 0.04

19tr C42H68O14 819.4507 4.8 7.34 5.70 ± 0.06

Ftr C42H66O14 817.4350 5.0 9.57 7.94 ± 0.03

Itr C42H68O13 803.4558 1.0 11.99 23.83 ± 0.10

Finally, the molar proportions of the different saponins remain largely unaffected
upon transesterification, as shown in the graphical comparison in Figure 4, where saponins
O (20.1%), B (30.2%), I (23.8%), X (5.5%) and Y (19.9%) are quantitatively converted into
saponins Otr (21.1%), Btr (31.5%), Itr (22.9%), Xtr (6.2%), and Ytr (18.3%), see Figure 4.

The hydrolyzed and transesterification reactions performed on the bidesmosidic [3 + 1]
and [2 + 1] saponins extracted from the quinoa husk were demonstrated to specifically
occur for the C-28 ester function. We propose, in accordance with basic organic chemistry,
that both processes involve a nucleophilic addition of HO− (basic hydrolysis) or CH3O−

(transesterification) at the carbon atom of the C-28 ester function, followed by an elimination
of the C-28 glucose as the leaving group, according to the general mechanism presented in
Figure 6.
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undergone by the bidesmosidic saponins extracted from the quinoa husk: addition–elimination
mechanism specifically occurring at the ester function.

2.3. Hemolytic Activity (HA) Modulation

The membranolytic properties of NE, HE and TE are compared by determining their
hemolytic activities (HA) as a standard method [29,35,47,51–54]. HA is evaluated by
determining the evolution of the hemoglobin release in solution when a suspension of red
blood cells is exposed to increasing concentrations of the tested molecules. The hemoglobin
release is measured by determining the solution absorbance at 540 nm [55]. We recently
proposed the use of a referent saponin solution to make it possible to compare results from
different groups [40,41], and we selected the highly hemolytic saponins extracted from
Aesculus hippocastanum [56]. The HA are therefore expressed as a percentage of the activity
of the standard solution (see Material and Methods).
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The comparison of the HA of the three extracts, see Figure 7, undoubtedly demon-
strates the impact of chemical modifications on the HA. The data first confirm that (i) the
bidesmosidic saponins present in the NE do not present any membranolytic activity against
the red blood cells in the used concentration range, say up to 500 µg·mL−1; and (ii) that
monodesmosidic saponins present in the hydrolyzed extract are already active at a con-
centration around 20 µg·mL−1. The bidesmosidic saponins are strongly activated upon
transesterification, since a HA is detected as being above 50 µg·mL−1, see Figure 7. This
also reveals that the hydrolyzed negatively charged saponins are more membranolytic than
the transesterified ones, which is at odds with our prediction on the basis of their presumed
relative amphiphilicities.
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Experiments were performed in triplicate, using a 2% erythrocytes suspension from bovine blood.
Hemolytic activities are expressed in % of the activity of the referent, a 500 µg·mL−1 solution of A.
hippocastanum saponins.

The red blood cell membrane, being rich in N-acetyl-neuraminic acids, is globally neg-
atively charged [57,58]. This permanent global negative charge is mandatory for preventing
red blood cells from aggregating and also for creating a high concentration in positive ions
all around the red blood cells [57,58]. The greater activity of the hydrolyzed saponins that
exhibit a net negative charge may be linked to this accumulation of positive charges around
the red blood cells. We recently showed that the desulfation of the negatively charged
sulfated saponins extracted from Holothuria scabra generates neutral saponins whose HA
can no longer be detected [41].

3. Materials and Methods
3.1. Chemicals

Technical-grade methanol, n-hexane, chloroform, dichloromethane and isobutanol,
HPLC grade water, formic acid, acetonitrile, and methanol were provided by CHEM-LAB
NV (Somme-Leuze, Belgium). 2,5-dihydroxybenzoic acid (DHB), N,N-dimethylaniline
(DMA), Hederacoside C and potassium methanolate were purchased from Sigma-Aldrich
(Diegem, Belgium). Phosphoric acid, borax, sodium hydroxide and hydrochloric acid were
provided by VWR Chemicals (Leuven, Belgium), while thionyl chloride, p-toluenesulfonic
acid, sulfuric acid and DowexTM resin were purchased from Thermo Scientific (Merelbeke,
Belgium).

3.2. Extraction

Mature achene integuments were obtained from pooled samples (Spring 2020) from
the Quinoa Breeding Program from Instituto Nacional dé Investigación Agria (INIA) Chile.
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Seeds were then subjected to physical shearing and kernels were discarded. The obtained
husk powder (particle diameter < 1 mm) was sent to Belgium and kept away from light.
The husk powder was placed under stirring overnight in methanol. The solution was then
centrifuged at 4500× g for ten minutes (Sigma 2-16P, Sigma, Osterode am Harz, Germany).
The supernatant was then collected, and the extract diluted with water to reach a volume
ration of 70/30 (methanol/water). This methanolic extract was partitioned (v/v) with n-
hexane, chloroform, and dichloromethane to remove apolar compounds. The third aqueous
phase is recovered and evaporated under vacuum using a rotary evaporator (IKA RV 10,
IKA, Staufen, Germany) in a water bath (80 rpm, 50 ◦C) and the residue is brought to a
volume of 25 mL in order to carry out a fourth liquid/liquid extraction (v/v) with HPLC
isobutanol to recover the saponins in the organic phase. This phase is then washed twice
with Milli-Q water to purify the extract from the residual salts and impurities. The organic
phase, containing saponins, is evaporated under vacuum to obtain a purified powder.

3.3. Microwave-Assisted Alkaline Hydrolysis

The hydrolysis protocol was adapted from our previous study [40]. C. quinoa NE
(3 mg) is solubilized in 3 mL of a buffer solution (pH 10:50 mL of borax 0.025 mol·L−1

added to 18.3 mL of NaOH 0.1 mol·L-1, brought to 100 mL with Milli-Q water). The
solution is heated at 150 ◦C for 5 min using a microwave device (Biotage, Initiator Classic,
Biotage Sweden, Uppsala, Sweden) and cooled to room temperature. The pH is brought to
7 using HCl 0.1 mol·L−1 and a liquid/liquid extraction is performed (v/v) with isobutanol.
The organic phase is washed twice with Milli-Q water and evaporated under vacuum to
obtain the saponins of HE in a powder (57% yield, 97% conversion).

3.4. Methanolysis

The transesterification protocol was adapted from Chung et al. [50]. C. quinoa NE
(100 mg) is placed overnight in a vial at 50 ◦C to remove residual water. The vial is then
placed in a graphite bath (60 ◦C, under N2) and 15 mL of CH3OK (1 mol·L−1) in anhydrous
methanol are added (stirring, 60 min). The solution is directly evaporated under vacuum
and the dry extract is brought to a volume of 15 mL with isobutanol before undergoing two
liquid/liquid extractions (v/v) with Milli-Q water to desalt the phase. The butanol phase is
again evaporated to dryness under vacuum to recover the TE saponins as a powder (60%
yield, 95% conversion).

3.5. Mass Spectrometry (MS) Analyses

The MS analyses are carried out using Matrix-assisted Laser Desorption/Ionization
(MALDI), performed on a Water QToF Premier mass spectrometer (Waters, Manchester,
UK) in the positive ionization mode. The matrix consists of a mixture of dihydroxybenzoic
acid (DHB, 25 mg) and N,N-dimethylaniline (DMA, 6 µL, 99.9%) in 250 µL of Milli-Q
water/acetonitrile (v/v). A matrix solution droplet (1 µL) is placed on a stainless-steel
plate and air-dried. An amount of 1 µL of the sample solution (1 mg of dried extract
in 1 mL of HPLC grade methanol) is then spotted on the top of the matrix crystal and
air-dried. The plate is introduced into the MALDI-ToF mass spectrometer. The MALDI
source is composed of an Nd-YAG laser with a maximum energy of 104.1 µJ, transferred
to the sample in a 2.2 ns pulse (200 Hz). For spectral recording, the quadrupole (rf-only
mode) si configured to let the ions pass between m/z 250 and 2000. All the ions are then
mass-analyzed using the ToF analyzer (1 s integration time). Mass analyses are performed
with the ToF analyzer in reflectron mode, at a FWHM resolution around 10,000. Accurate
mass measurements (HRMS) are performed using MALDI-MS(+) with PEG 600-1500 as the
external standard (lock mass).

Liquid chromatography analyses are performed with a Waters Acquity UPLC H-Class
(Waters, Manchester, UK) composed of a vacuum degasser, a quaternary pump and an
autosampler, coupled to a Waters Synapt G2-Si mass spectrometer (Waters, Manchester,
UK). A non-polar column (Acquity UPLC BEH C18; 2.1 × 50 mm; 1.7 µm; Waters) is
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used at 40 ◦C. For these analyses, 0.1 mg of saponin extract is dissolved in 1 mL of a
Milli-Q water/acetonitrile solution (85/15). A volume of 5 µL is injected into the column.
The gradient is optimized for the compounds in this study and follows a flow rate of
250 µL·min−1 of Milli-Q water (with 0.1% formic acid (HCOOH), eluent A) and acetonitrile
(CH3CN, eluent B). The mobile phase consists of an elution gradient starting with 85% of
eluent A and 15% of eluent B, reaching 60% of eluent A and 40% eluent B at 6 min, and
maintained for 3 min. The ratio is then modified to reach 5% eluent A and 95% eluent
B at 11 min, maintained for 1 min and, finally, brought back to 85% eluent A and 15%
eluent B at 13 min. This ratio is maintained until the end of the chromatographic run
(15 min). Electrospray ionization (ESI) in positive ionization mode is used for the saponin
ion production with typical conditions as follows: capillary voltage 3.1 kV, cone voltage
40 kV, source offset 80 V, source temperature of 120 ◦C and desolvation temperature of
300 ◦C (dry nitrogen flow rate 500 L·h−1), for a mass range (quadrupole in rf-only mode)
between m/z 50 and 2000 (1 s integration time). For the LC-MSMS experiments, precursor
ions are mass-selected by the quadrupole and collided against argon (Ar) in the Trap cell
of the TriWaveR device, and the kinetic energy of the laboratory frame (Elab) is selected to
afford intense enough product ion signals. The fragment ions are mass-measured with the
ToF analyzer.

The relative quantification of saponins within the natural extract is achieved by
adding a known quantity (0.1 mg·mL−1) of commercially available Hederacoside C (Sigma-
Aldrich—Product n◦ 97151—M-ClarityTM Program MQ100), a pure saponin from Hedera
helix, as internal standard in a solution of saponin extract at a given concentration, typically
0.1 mg·mL−1. The spiked solution is analyzed using LC-MS (5 µL injection volume) using
the experimental conditions described above. For each saponin molecule, including Heder-
acoside C, the corresponding LC-MS ion signals—including all the isotopic compositions—
are integrated using the integration algorithm, available under MassLynxTM 4.1 Software
(Waters, Manchester, UK). The global ion counts are then used to estimate the concentra-
tion of each saponin, relatively to Hederacoside C signal integration. The %-weights in
extract (see Table 1) correspond to the mass percentages of saponins with a given elemental
composition within the saponin extract. Please note that the sum of the %-weight does not
reach 100%, making it possible to estimate the saponin content within the extract at 95.9%.
The mass fractions in viscera expressed in mg·g−1 (see Table 1) are further calculated by
using the global yield of extraction determined at 15.5 mg of extract per g of ground husk.

3.6. Hemolytic Activity Experiments

To measure the hemolytic activity, reflecting the membranolytic activity, bovine blood
(stored with 0.11 M sodium citrate) was collected immediately after the death of the animal
at the Abattoirs de Ath (22 Chemin des Peupliers, 7800 Ath, Belgium) on 10 April 2021.
The bovine blood was then washed using a phosphate buffered saline (PBS) solution. This
solution was prepared by dissolving 8 g of sodium chloride (NaCl), 1.45 g of sodium
hydrogen phosphate dihydrate (Na2HPO4·2H2O), 0.2 g of potassium chloride (KCl) and
0.2 g potassium dihydrogen phosphate (KH2PO4) in 800 mL of Milli-Q water. The pH of
the solution was adjusted to 7.4 and the solution was brought to a volume of 1 L using
Milli-Q water. In a 50 mL Falcon, 10 mL of citrated bovine blood were added to 40 mL of
PBS solution. The Falcons were then centrifuged for fifteen minutes at 10,000 g and the
pellet was preserved. The washing was repeated until a clear and colorless supernatant was
obtained. The supernatant was discarded and 2 mL from the pellets was diluted with 98 mL
of PBS, to obtain a 2% (v/v) erythrocyte suspension. At the same time, various solutions
containing the extract of saponins at different concentrations were prepared. The latter
were placed in the presence of the 2% erythrocyte suspension in triplicate and incubated
for one hour at 20 ◦C, with continuous shaking (500 rpm) before being centrifuged again
at 10,000× g for ten minutes. The supernatant of each sample was then collected to
measure the absorbance of the solution (540 nm) [59]. In our assay, we systematically
used a 500 µg·mL−1 solution of saponins extracted from Aesculus hippocastanum seeds as a



Molecules 2022, 27, 3211 13 of 16

reference solution, since the corresponding escins are highly membranolytic [56]. The HA
of the tested saponin solutions were then calculated using the following equation:

HA (%) =

(
Abssample − Absblank

)
(Absref − Absblank)

∗ 100 (1)

where Abssample, Absblank, and Absref, respectively, correspond to the absorbance (540 nm)
of the tested erythrocytes/saponins solutions, of the erythrocyte solution and of the ery-
throcyte/referent saponin solution.

4. Conclusions

The elucidation of the relation between the biological activity of a family of molecules
and their molecular structures make it possible to explore the role of specific chemical
moieties present on active molecules on their biological activities.

In the present investigation, we focused on the bidesmosidic saponins extracted from
the C. quinoa husk, whose saccharidic chains were appended on the aglycone via two
different linkages, a glycosidic bond in C3 and an ester function in C28. The C28 position
was therefore sensitive to chemical modifications, such as hydrolysis and transesterifica-
tion. We thus prepared three sets of saponins: (i) bidesmosidic saponins directly extracted
and purified from the ground husk (NE—Natural Extract), (ii) monodesmosidic saponins
with a carboxylic acid group in C28 (HE—Hydrolyzed Extract), and (iii) monodesmosidic
saponins with a methyl ester function in C28 (TE—Transesterified Extract). The HE and
TE saponins were respectively prepared by microwave-assisted alkaline hydrolysis and
transesterification with potassium methanolate in anhydrous methanol under inert at-
mosphere from the NE saponins. Mass spectrometry experiments demonstrate that the
hydrolysis and the transesterification are both highly specific to the C28 ester function
and quantitative (~100% conversion). The impact of the structural modifications on the
membranolytic activity of the natural saponins was then assayed on the basis of hemolytic
activity measurement. The natural bidesmosidic saponins were confirmed to have no
activity against erythrocytes even at the highest tested concentration (500 µg·mL−1). The
hydrolyzed saponins start to be active against red blood cells already at 20 µg·mL−1,
whereas 50 µg·mL−1 of the transesterified saponins are necessary for inducing a detectable
hemoglobin release from the destroyed red blood cells. Globally, the observation that
monodesmosidic saponins, hydrolyzed or transesterified, are much more active against
erythrocytes than the bidesmosidic ones confirms that bidesmosidic saponins are likely
to be the dormant form of saponins in plants [60]. On the other hand, negatively charged
saponins, i.e., the hydrolyzed ones, being more hemolytic than the neutral ones, could
be associated with the high concentrations of positive charged ions in the vicinity of the
negatively charged red blood cell membranes. We detected a similar effect with sulfated
saponins (SO4

−) that were shown to be no longer hemolytic upon desulfation [41]. These
results pointing to the role of charged groups of saponins on their biological activity should
be addressed in the future for targeting specific applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27103211/s1, Figure S1: LC-MS analysis of the natural
saponin extract: EIC (Extracted Ion Current Chromatogram) of m/z 1135, m/z 1119, m/z 1105, and
m/z 1091, respectively corresponding to [M + H]+ ions of extracted bidesmosidic [3 + 1] saponins
from Chenopodium quinoa husk; Figure S2: LC-MS analysis of the natural saponin extract: EIC
(Extracted Ion Current Chromatogram) of m/z 1003, m/z 989, m/z 973, m/z 959, m/z 957, m/z 945,
m/z 943, and m/z 921, respectively corresponding to [M + H]+ ions of extracted bidesmosidic [2 +
1] saponins from Chenopodium quinoa husk; Figure S3: LC-MSMS(+) analysis of Chenopodium quinoa
husk saponin extract: CID spectrum (10 eV) recorded for the m/z 1135 precursor ions [M + H]+ at
5.34 min retention time (Saponin O); Figure S4: LC-MSMS(+) analysis of Chenopodium quinoa husk
saponin extract: CID spectrum (10 eV) recorded for the m/z 973 precursor ions [M + H]+ at 5.39 min
retention time (Saponin B); Figure S5: LC-MSMS(+) analysis of Chenopodium quinoa husk saponin

https://www.mdpi.com/article/10.3390/molecules27103211/s1
https://www.mdpi.com/article/10.3390/molecules27103211/s1
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extract: CID spectrum (10 eV) recorded for the m/z 929 precursor ions [M + H]+ at 6.58 min retention
time (Saponin I); Figure S6: Direct esterification of monodesmosidic saponins (from the hydrolyzed
extract—HE): unsuccessful attempts. Invariably the starting material is recovered after reaction;
Figure S7: Methanolysis of the bidesmosidic saponins (from the natural extract—NE). All attempts
under neutral/acidic conditions failed and only the transesterification using MeOK in anhydrous
methanol under inert atmosphere afforded the expected C28-methylated saponins.
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